Speed = wavelength × frequency
giving that frequency is 0, wavelength and speed are directionally proportional. wavelength decrease = speed decrease
Answer:
t = 0.33h = 1200s
x = 18.33 km
Explanation:
If the origin of coordinates is at the second car, you can write the following equations for both cars:
car 1:
(1)
xo = 10 km
v1 = 55km/h
car 2:
(2)
v2 = 85km/h
For a specific value of time t the positions of both cars are equal, that is, x=x'. You equal equations (1) and (2) and solve for t:


The position in which both cars coincides is:

Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.
Answer:
Option (c) : 20°C
Explanation:

T(final) = 500* 10 + 100*70/600 = 20°C
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.