The amino acids are the molecules where we can found the carboxyl group (-
), amino group (-
), hydrogen atom (H) and a residual R-group. On the structure of the residual R-group the name of the amino acid depends. Like if R is hydrogen (H) the amino acid is alanine; If R- group is a phenyl group i.e.
, the compound is called phenyl alanine. The structure of the general amino acid skeleton can be shown as-
There are a number of methods of which we can form sodium bicarbonate. This compound is commonly known as baking soda. It can be prepared from the reaction of sodium hydroxide and carbonic acid. Carbonic acid in water dissociates into hydrogen ions and the bicarbonate ion while sodium hydroxide would ionize into sodium ions and hydroxide ions. With this, these ions would react and form the sodium bicarbonate salt and water. The chemical reaction would be expressed as follows:
NaOH + H2CO3 = H2O + NaHCO3
Sodium bicarbonate is used in cooking, as a toothpaste and as a cleaning substance. Also, it is used in medical applications like for the preparation of the dialysate solution.
Explanation:
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside [crystal]s. Water is often incorporated in the formation of crystals from aqueous solutions. ... Water of crystallization can generally be removed by heating a sample but the crystalline properties are often lost
Answer: The molarity of this solution is 0.159 M.
Explanation:
Given: Mass of solute = 16.3 g
Volume = 1.75 L
Number of moles is defined as the mass of substance divided by its molar mass.
Hence, moles of NaCl (molar mass = 58.44 g/mol) ar calculated as follows.

Molarity is the number of moles of a substance present in a liter of solution.
So, molarity of the given solution is calculated as follows.

Thus, we can conclude that the molarity of this solution is 0.159 M.