Answer:
Slope = 2 m / 10 m = 1/5
For every 5 m of effort the object will be raised 1 m
W = work done on object = M g h increase in PE of object
E S = W where E is effort and S the distance thru which the effort acts
E S = M g H
E = 100 kg * 9.8 m/s^2 * 2 m / 10 m = 196 kg m / s^2 = 196 N
Check: total work = 2 * 9.8 * 100 = 1960 J
Force Needed = 1960 J / 2 m = 980 Newtons
Mechanical advantage = 980 / 196 = 5 as one would expect since the object is raised 1 m for every 5 m of force input
The velocity of the watermelon as it hits the ground is 14.715 m/s.
Given the data in the question;
Since the Watermelon was dropped from rest,
- Initial velocity of the Watermelon;

- Time taken for the Watermelon to hit the ground;

- We know that, Acceleration due to gravity;

Now, we determine the velocity of the watermelon as it hits the ground which is the final velocity.
From the First Equation of Motion:

Now, under gravity, acceleration ''a" will Acceleration due to gravity;
, "v" is the final velocity, "u" is the initial velocity and "t" is the time taken.
So, we substitute our values into the equation

Therefore, the velocity of the watermelon as it hits the ground is 14.715 m/s
Learn more; brainly.com/question/13275688
Answer:
M L1 = m L2 torques must be zero around the fulcrum
M = m L2 / L1 = .3 kg * 28 cm / 22 cm = .382 kg
Answer:
200N
Explanation:
EVERY FORCE IS OPPOSED BY AN EQUAL FORCE, REGARDLESS OF THE WEIGHT OF THE OBJECTS APPLYING THE FORCE.
Answer:
Student A is correct
Explanation:
Colored objects look the way they do because of reflected light. When sunlight is shined on a green leaf, the violet, red and orange wavelengths are absorbed. The reflected wavelengths appear green. In each case we are seeing the complementary colors to the ones absorbed.