For E = 200 gpa and i = 65. 0(106) mm4, the slope of end a of the cantilevered beam is mathematically given as
A=0.0048rads
<h3>What is the slope of end a of the cantilevered beam?</h3>
Generally, the equation for the is mathematically given as

Therefore
A=\frac{10+10^2+3^2}{2*240*10^9*65*10^6}+\frac{10+10^3*3}{240*10^9*65*10^{-6}}
A=0.00288+0.00192=0.0048rads
A=0.0048rads
In conclusion, the slope is
A=0.0048rads
Read more about Graph
brainly.com/question/14375099
Answer: Next time you create a question, add an image or PDF. Because I do not know the question. So, may you please create a new question?
Answer:
vector quantities are resolved into their component form (along the x and y-axis) before adding them. Let us assume that two vectors are
→
a
=
x
1
^
i
+
y
1
^
j
and
→
b
=
x
2
^
i
+
y
2
^
j
, we can find the sum of two vectors as follows.
→
a
+
→
b
=
x
1
^
i
+
y
1
^
j
+
x
2
^
i
+
y
2
^
j
=
(
x
1
+
x
2
)
^
i
+
(
y
1
+
y
2
)
^
j
The direction of the sum of the vectors (with positive x-axis) is,
θ
=
tan
−
1
(
y
1
+
y
2
x
1
+
x
2
)
Law of universal gravitation:
F = GMm/r²
F = gravitational force, G = gravitational constant, M & m = masses of the objects, r = distance between the objects
F is proportional to both M and m:
F ∝ M, F ∝ m
F is proportional to the inverse square of r:
F ∝ 1/r²
Calculate the scaling factor of F due to the change in M:
k₁ = 2M/M = 2
Calculate the scaling factor of F due to the change in m:
k₂ = 2m/m = 2
Calculate the scaling factor of F due to the change in r:
k₃ = 1/(4r/r)² = 1/16
Multiply the original force F by the scaling factors to obtain the new force:
Fk₁k₂k₃
= F(2)(2)(1/16)
= F/4