The law of conservation of momentum tells us that momentum
is conserved, therefore total initial momentum should be equal to total final
momentum. In this case, we can expressed this mathematically as:
mA vA + mB vB = m v
where, m is the mass in kg, v is the velocity in m/s
since m is the total mass, m = mA + mB, we can write the
equation as:
mA vA + mB vB = (mA + mB) v
furthermore, car B was at a stop signal therefore vB = 0,
hence
mA vA + 0 = (mA + mB) v
1800 (vA) = (1800 + 1500) (7.1 m/s)
<span>vA = 13.02 m/s</span>
Answer:
false statement : b ) For the motion of a cart on an incline plane having a coefficient of kinetic friction of 0.5, the magnitude of the change in kinetic energy equals the magnitude of the change in gravitational potential energy
Explanation:
mechanical energy = potential energy + kinetic energy = constant
differentiating both side
Δ potential energy + Δ kinetic energy = 0
Δ potential energy = - Δ kinetic energy
first statement is true.
Friction is a non conservative force so inter-conversion of potential and kinetic energy is not possible in that case. In case of second option, the correct relation is as follows
change in gravitational potential energy = change in kinetic energy + work done against friction .
So given 2 nd option is incorrect.
In case of no change in gravitational energy , work done is equal to
change in kinetic energy.
This is the same question as the one previously but with more details, so I will just use my previous answer.
1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.
So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
Set up the problem with the conversion rates as fractions where when you multiply the units cancel out leaving the desired units behind.
The answer is destructive interference. You have this for both C and D. I suspect one of C or D is supposed to be constructive interference... But destructive interference is the answer