Answer:
Transverse
Explanation:
There are two types of waves, according to the direction of their oscillation:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. Examples of transverse waves are electromagnetic waves
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. Examples of longitudinal waves are sound waves.
Light waves corresponds to the visible part of the electromagnetic spectrum, which includes all the different types of electromagnetic waves (which consist of oscillations of electric and magnetic fields that are perpendicular to the direction of propagation of the wave): therefore, they are transverse waves.
Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.
Answer:
A. The brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes
Explanation:
Based on the law of conservation of energy, the brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes.
The law of conservation of energy states that energy is neither created nor destroyed in a system but it is transformed from one form to another.
As the airplane slows down, the kinetic energy which is presented in the motion of the plane is gradually converted to potential energy.
The potential energy is the energy due to the position of a body.
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.
Answer:
Gravitational force
Explanation:
Gravitational force is obviously one of the biggest obstacles in climbing. You are essentially going against this very strong force to pull your body mass up the beautiful terrain. Gravity is defined as the force of attraction between all masses in the universe, gravity is what allows the sport of climbing.