Answer:
λ = 596 nm.
Explanation:
Fringe width = λ D / d
λ is wave length , D is screen distance and d is slit separation.
Putting the values
1.62 x 10⁻² =( λ x 5.3 ) / .195 x 10⁻³

λ = 596 nm.
Under the assumption that the tires do not change in volume, apply Gay-Lussac's law:
P/T = const.
P = pressure, T = temperature, the quotient of P/T must stay constant.
Initial P and T values:
P = 210kPa + 101.325kPa
P = 311.325kPa (add 101.325 to change gauge pressure to absolute pressure)
T = 25°C = 298.15K
Final P and T values:
P = ?, T = 0°C = 273.15K
Set the initial and final P/T values equal to each other and solve for the final P:
311.325/298.15 = P/273.15
P = 285.220kPa
Subtract 101.325kPa to find the final gauge pressure:
285.220kPa - 101.325kPa = 183.895271kPa
The final gauge pressure is 184kPa or 26.7psi.
Answer:
UMm If i understood ide answer
Explanation:
Answer:
U = initial velocity, t = time taken, s = distance covered. Deceleration Formula is used to calculate the deceleration of the given body in motion.
Answer:
The answer is 8 N
Explanation:
The Lorentz force for a current carrying wire is
f = I * L x B
So, for magnetic forces to manifest the current must not be parallel to the magnetic field. So the cases where the wire is parallel to the field would result in a force of zero applied on the wires by the magnetic field because the cross product becomes zero.
For the perpendicular cases:
f = I * L * B
f = 80 * 0.1 * 1 = 8 N