55= No (1/2)^55/57
55= No (1/2)^3.9
55= No (1/2)^4
55= No (1/16)
No= 880 g
Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of
, we use the equation:
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
![\text{Number of electron pair}=\frac{1}{2}[6]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5B6%5D%3D3)
The number of electron pair around the central metal atom are 3. This means that the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.