Answer:
The Avogadro's number is 
Explanation:
From the question we are told that
The edge length is 
The density of the metal is 
The molar mass of Ba is 
Generally the volume of a unit cell is

substituting value
![V = [5.02 *10^{-10}]^3](https://tex.z-dn.net/?f=V%20%3D%20%20%5B5.02%20%2A10%5E%7B-10%7D%5D%5E3)
From the question we are told that 68% of the unit cell is occupied by Ba atoms and that the structure is a metal which implies that the crystalline structure will be (BCC),
The volume of barium atom is

substituting value


The Molar mass of barium is mathematically represented as

Where
is the Avogadro's number
So

substituting value


Answer:
4.13×10²⁷ molecules of N₂ are in the room
Explanation:
ideal gases Law → P . V = n . R . T
Pressure . volume = moles . Ideal Gases Constant . T° K
T°K = T°C + 273 → 20°C + 273 = 293K
Let's determine the volume of the room:
18 ft . 18 ft . 18ft = 5832 ft³
We convert the ft³ to L → 5832 ft³ . 28.3L / 1 ft³ = 165045.6 L
1 atm . 165045.6 L = n . 0.082 L.atm/mol.K . 293K
(1 atm . 165045.6 L) / 0.082 L.atm/mol.K . 293K = n
6869.4 moles of N₂ are in the room
If we want to find out the number of molecules we multiply the moles by NA
6869.4 mol . 6.02×10²³ = 4.13×10²⁷ molecules
Answer :
The time taken by the reaction is 19.2 seconds.
The order of reaction is, second order reaction.
Explanation :
The general formula to determine the unit of rate constant is:

Unit of rate constant Order of reaction
0
1
2
As the unit of rate constant is
. So, the order of reaction is second order.
The expression used for second order kinetics is:
![kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}](https://tex.z-dn.net/?f=kt%3D%5Cfrac%7B1%7D%7B%5BA_t%5D%7D-%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
where,
k = rate constant = 
t = time = ?
= final concentration = 0.97 M
= initial concentration = 2.48 M
Now put all the given values in the above expression, we get:


Therefore, the time taken by the reaction is 19.2 seconds.
Answer: A new model of the atom that described electrons as being in a cloud
Explanation: