Answer:
126.99115 g
Explanation:
50 g at 90 cm
Stick balances at 61.3 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The mass of the meter stick is 126.99115 g
Answer:
-39.2m/s
Explanation:
Using the equation of motion;
v = u + at
Since the ball is thrown upward, the acceleration due to gravity acting on it will be negative, hence a = -g
v = u - gt
Since g = 9.8m/s²
t = 4.0s
u = 0m/s
v = 0 + (-9.8)(4)
v = 0 + (-9.8)(4)
v = -39.2m/s
Hence the speed of the ball before release is -39.2m/s
Answer:
Making a quick cut left to intercept a pass
Explanation:
It takes more energe to do than running
A motor is built to use all those things and produce mechanical energy.
Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.