Answer:
yes
Explanation:
because I think it is correct fo u
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
The chemical reaction would be:
C3H8 + 5O2 = 3CO2 + 4H2O
For this case, we assume that gas is ideal thus in every 1 mol the volume would be 22.41 L. We calculate as follows:
28.7 L C3H8 ( 1 mol / 22.41 L ) ( 4 mol H2O / 1 mol C3H8 ) ( 18.02 g / mol ) = 92.31 g H2O produced
Hope this answers the question.