Answer:
A.All Mixtures Are Made Up Of Solutions
Explanation:
<h3>
Answer:</h3>
5.00 mol O₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.<u>
</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.01 × 10²⁴ atoms O₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
4.99834 mol O₂ ≈ 5.00 mol O₂
Answer:
The over all charge on atom will be +2.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
For example
X is the element having 12 protons 10 electrons and 14 neutrons.
The number of protons and electrons are not equal which means two electrons are lose by the given atom and it is present in the form of cation.
The over all charge on atom will be +2.
Answer:
1. Comparative
2. Independent variable
3. The pH is the Dependent variable
Answer: 241.6 grams of CO2
Explanation: you take 84.3 grams C5H12 and divide it by 72.15 grams of C5H12(which is the molar mass) you take that answer and calculate the mols of CO2 by multiplying the 1.168 you got before and multiply it by 5. You take the answer you get from that and multiply it by the molar mass of CO2 and get the theoretical yield and then you just plug it in. 94= (x/257.02)x100 and solve to find x which is the actual yield.