Answer:
ΔT = 0.02412 s
Explanation:
We will simply calculate the time for both the waves to travel through rail distance.
FOR THE TRAVELING THROUGH RAIL:

FOR THE WAVE TRAVELING THROUGH AIR:

The separation in time between two pulses can now be given as follows:

<u>ΔT = 0.02412 s</u>
Answer:
The bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Explanation:
Given;
density of the liquid, ρ = 1500 kg/m³
frequency of the wave, F = 410 Hz
wavelength of the sound, λ = 7.80 m
The speed of the wave is calculated as;
v = Fλ
v = 410 x 7.8
v = 3,198 m/s
The bulk modulus of the liquid is calculated as;

Therefore, the bulk modulus of the liquid is 1.534 x 10¹⁰ N/m²
Answer:
The average induced emf around the border of the circular region is
.
Explanation:
Given that,
Radius of circular region, r = 1.5 mm
Initial magnetic field, B = 0
Final magnetic field, B' = 1.5 T
The magnetic field is pointing upward when viewed from above, perpendicular to the circular plane in a time of 125 ms. We need to find the average induced emf around the border of the circular region. It is given by the rate of change of magnetic flux as :

So, the average induced emf around the border of the circular region is
.
Acceleration formulae is:
a=Fnet/mass
According to the question
a=7500N/1500kg
a=5m/s sq.
Answer:
Rebounce angle is 345°
Rebounce speed is 989.95m/s
Explanation:
Calculate the x component of the velocity of the bullet before impact by using the following relation:
Vbx= Vb Cos thetha
Here, is the initial velocity of the bullet, Vo = 1400m/s and is the incidence angle of the bullet.= theta = 15°
Substituting
Vbx = Cos15 ×1400 = 1352.30m/s
Calculate the y component using the relation:
Vby = Vo Sin theta
Vby = sin 15° × 1400
Vby = 362.35m/s
The rebounce angle = 360 - incidence angle
Rebounce angle =( 360 - 15)° = 345°
The rebound speed V' = Vby - Vbx
V' = (1352.30 - 362.35)m/s
V' = 989.95 m/s