Answer:
(a) 0.177 m
(b) 16.491 s
(c) 25 cycles
Explanation:
(a)
Distance between the maximum and the minimum of the wave = 2A ............ Equation 1
Where A = amplitude of the wave.
Given: A = 0.0885 m,
Distance between the maximum and the minimum of the wave = (2×0.0885) m
Distance between the maximum and the minimum of the wave = 0.177 m.
(b)
T = 1/f ...................... Equation 2.
Where T = period, f = frequency.
Given: f = 4.31 Hz
T = 1/4.31
T = 0.23 s.
If 1 cycle pass through the stationary observer for 0.23 s.
Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.
= 16.491 s.
(c)
If 1.21 m contains 1 cycle,
Then, 30.7 m will contain (30.7×1)/1.21
= 25.37 cycles
Approximately 25 cycles.
Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
Answer:
2 m/s^2
Explanation:
a = v^2/r
a = (10m/s)^2 / 50m
a = 2 m/s^2
Leave a like and mark brainliest if this helped
Leave a like and mark brainliest if this helped
Answer:
(a) 
(b) 
Explanation:
(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

The radius of the wire = a

The surface current density 
(b) The current density is inversely proportional
......(1)
k is the constant of proportionality

........(2)
substituting (1) into (2)





substitute 

Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process