Ok so if each side is 4.53 cm, we can multiply 4.53 x 4.53 x 4.53 to get the volume (since v= l x w x h). Density equals mass/volume, so
519 g/4.53 cm
114.57 g/cm^3 (since none of the units cancel)
Explanation:
Velocity = displacement / time
v = √((58 m)² + (135 m)²) / (12 min × 60 s/min)
v = 0.20 m/s
As the plane falls the parabolic path remains directly below as the plane continues to fly over. This give more of an overview. When the package falls vertical acceleration happens as there is a vertical velocity as the package falls form high above. The downwards motion of gravity acts on the package if the approximated projectile motion ignoring air resistance.
Answer:
a) 4.2m/s
b) 5.0m/s
Explanation:
This problem is solved using the principle of conservation of linear momentum which states that in a closed system of colliding bodies, the sum of the total momenta before collision is equal to the sum of the total momenta after collision.
The problem is also an illustration of elastic collision where there is no loss in kinetic energy.
Equation (1) is a mathematical representation of the the principle of conservation of linear momentum for two colliding bodies of masses
and
whose respective velocities before collision are
and
;

where
and
are their respective velocities after collision.
Given;

Note that
=0 because the second mass
was at rest before the collision.
Also, since the two masses are equal, we can say that
so that equation (1) is reduced as follows;

m cancels out of both sides of equation (2), and we obtain the following;

a) When
, we obtain the following by equation(3)

b) As
stops moving
, therefore,

Answer:
electronegativity ☝️☝️☝️answer