1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
8

75 points

Physics
1 answer:
Vikki [24]3 years ago
5 0

Answer:

Explanation:

The height to which a ball will bounce depends on the height from which it is dropped, what the ball is made out of (and if it is inflated, what the pressure is), and what the surface it bounces from is made out of. The radius of the ball doesn't really matter, if you are measuring the height of the ball from the bottom of the ball to the ground.

A ball's gravitational potential energy is proportional to its height. At the bottom, just before the bounce, this energy is now all in the form of kinetic energy. After the bounce, the ball and the ground or floor have absorbed some of that energy and have become warmer and have made a noise. This energy lost in the bounce is a more or less constant fraction of the energy of the ball before the bounce. As the ball goes back up, kinetic energy (now a bit less) gets traded back for gravitational potential energy, and it will rise back to a height that is the original height times (1-fraction of energy lost). We'll call this number f. For a superball, f may be around 90% (0.9) or perhaps even bigger. For a steel ball on a thick steel plate, f is >0.95. For a properly inflated basketball, f is about 0.75. For a squash ball, f might be less than 0.5 or 0.25 - squash balls are not very bouncy. The steel ball on an unvarnished pine wood floor may not bounce at all, but rather make a dent, and so what the floor is made out of makes quite a lot of difference.

You might be interested in
A sinusoidal transverse wave travels along a long, stretched, string. the amplitude of this wave is 0.0885 m, it's frequency is
timofeeve [1]

Answer:

(a) 0.177 m

(b) 16.491 s

(c) 25 cycles

Explanation:

(a)

Distance between the maximum and the minimum of the  wave = 2A ............ Equation 1

Where A = amplitude of the wave.

Given: A = 0.0885 m,

Distance between the maximum and the minimum of the wave = (2×0.0885) m

Distance between the maximum and the minimum of the wave = 0.177 m.

(b)

T = 1/f ...................... Equation 2.

Where T = period, f = frequency.

Given: f = 4.31 Hz

T = 1/4.31

T = 0.23 s.

If 1 cycle pass through the stationary observer for 0.23 s.

Then, 71.7 cycles will pass through the stationary observer for (0.23×71.7) s.

= 16.491 s.

(c)

If  1.21 m contains  1 cycle,

Then, 30.7 m will contain (30.7×1)/1.21

= 25.37 cycles

Approximately 25 cycles.

6 0
3 years ago
A light wave encounters a partial physical barrier, such as a wall with a hole in it. What is MOST LIKELY to occur?
tatiyna
Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
5 0
3 years ago
Read 2 more answers
A cyclist turns a corner with a radius of 50m at a speed of 10m/s. What is the cyclist's acceleration?
garri49 [273]

Answer:

2 m/s^2

Explanation:

a = v^2/r

a = (10m/s)^2 / 50m

a = 2 m/s^2

Leave a like and mark brainliest if this helped

Leave a like and mark brainliest if this helped

5 0
3 years ago
A current I flows down a wire of radius a.
Helga [31]

Answer:

(a) K = \frac{I}{2\pi a}

(b) J = \frac{I}{2\pi as}

Explanation:

(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

                                   K = \frac{dI}{dL}

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

                                   dL = 2\pi r

The radius of the wire = a

                                    dL = 2\pi a

The surface current density K = \frac{I}{2\pi a}

(b) The current density is inversely proportional

                                     J \alpha  s^{-1}    

                                     J = \frac{k}{s}           ......(1)

k is the constant of proportionality

                                     I = \int\limits {J} \, dS

                                     I = J \int\limits \, dS     ........(2)

substituting (1) into (2)

                                     I = \frac{k}{s} \int\limits\, dS

                                     I = k \int\limits^a_0 \frac{1}{s}  {s} \, dS

                                     I = 2\pi k\int\limits\, dS

                                     I = 2\pi ka

                                     k = \frac{I}{2\pi a}

substitute J = \frac{k}{s}

                                     J = \frac{I}{2\pi as}

7 0
3 years ago
PLEASEE I NEED HELP FAST!!! .Study the scenario.A small container of water with a low temperature is poured into a large contain
RSB [31]

Answer:

that best describes the process is C

Explanation:

This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.

Heat absorbed by the smallest container

             Q_c = m ce (T_{f}-T₀)

Heat released by the largest container is

              Q_a = M ce (T_{i}-T_{f})

how

        Q_c = Q_a

       m (T_{f}-T₀) = M (T_{i} - T_{f})

Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.

Of the final statements, the one that best describes the process is C

since it talks about the thermal energy and the heat that is transferred in the process

8 0
4 years ago
Other questions:
  • An object speed is 7.2 m/s and its momentum is 360 kg m/s what is mass of object
    6·1 answer
  • Which law describes how the Earth applies a gravitational force on the Moon, the Moon applies a gravitational force on Earth? *
    8·2 answers
  • A(n) ______ is a gap in the geologic record where some rock layers have been lot because of erosion
    15·1 answer
  • How much heat is gained by 1.0 gram of iron when its heated 15 degrees celsius
    8·1 answer
  • The following shows the forces acting on a box. Explain how you calculate the net force in any direction on the box.
    7·1 answer
  • A string is being pulled with a force of 20 N and moves a 5 kg block to the left at a constant speed. What is the coefficient of
    9·1 answer
  • The velocity of a car increases from 10 km/h to 50 km/h in 5 seconds. What is its acceleration?
    10·1 answer
  • In which of the following cases does a car have a negative velocity and a positive acceleration? A car that is traveling in the:
    10·1 answer
  • Is the amplitude just 2? Or do I combine all of them and do 6?​
    8·1 answer
  • a log splitter puts out 1 100W of power for every 1500 W put into it. the efficiency of the machine is what
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!