<span>A+B-C
</span><span>A = 6x - 2y
B = -4x - 8y
C = -3x + 9y
(</span>6x - 2y) + (-4x - 8y) - (-3x + 9y)
(6x - 2y) + (-4x - 8y) + (3x - 9y)
2x -10y + (3x - 9y)
5x - 19y
Answer:

Explanation:
The speed of light in these mediums shall be lower than that in vacuum thus the total time light needs to cross both the media are calculated as under
Total time = Time taken through ice + Time taken through quartz
Time taken through ice = Thickness of ice / (speed of light in ice)


Thus in the same time the it would had covered a distance of
![Distance_{vaccum}=Totaltime\times V_{vaccum}\\\\Distance_{vaccum}=10^{-2}[2.20\mu _{ice+1.50\mu _{quartz}}]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3DTotaltime%5Ctimes%20V_%7Bvaccum%7D%5C%5C%5C%5CDistance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Cmu%20_%7Bice%2B1.50%5Cmu%20_%7Bquartz%7D%7D%5D)
we have

Applying values we have
![Distance_{vaccum}=10^{-2}[2.20\times 1.309+1.50\times 1.542]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Ctimes%201.309%2B1.50%5Ctimes%201.542%5D)

Geostrophic winds blows parallel to the isobars. That is because the Coriolis force and pressure gradient force ( PGF ) are in balance. But near the surface the friction can act to change the direction of the wind and to slow it down. Coriolis force decreases at the surface and PGF stays the same. The difference in terrain conditions affects how much friction is exerted. Hills and forests force the wind to change direction more than flat areas. Answer: Friction reduces the speed so Coriolis is weakened.
The mass of the aeroplane is 300,000 kg.
<h3>What is Newton's second law of motion?</h3>
It states that the force F is directly proportional to the acceleration a of the body and its mass.
The law is represented as
F =ma
where acceleration a = velocity change v / time interval t
Given is the aeroplane lands at a speed of 80 m/s. After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s. The mean resultant force on the aeroplane as it decelerates is 750 000 N.
The force expression will be
F = mv/t
Substitute the values and we have
750000 = m x (80 -10)/ 28
750,000 = m x 2.5
m = 300,000 kg
Thus, the mass of the aeroplane is 300,000 kg.
Learn more about Newton's second law of motion.
brainly.com/question/13447525
#SPJ1