Answer:
There are 1.8021 ⋅ 1024 molecules of CH4 in 48 grams of CH4. To answer this question, you must understand how to convert grams of a molecule into the number of molecules. To do this, you have to utilize the concepts of moles and molar mass. A mole is just a unit of measurement. Avogadro's number is equal to 6.022 ⋅1023 molecules/mole. i think please dont complain to me if its wrong im sorry
Explanation:
Hydrogen gas(H2) has a molar mass of 2 g. Molar mass of a substance is defined as the mass of 1 mole of that substance. And by 1 mole it is meant a collection of 6.022*10^23 particles of that substance.
So number of moles of H2 are 0.5 in this case. And thus it means there are (6.022*10^23)*0.5 particles( here they are molecules) in 1g of H2.
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
Your answer is B, conservation of mass
Recall that percent yield is given by: %Yeild = actual yeild/theoretical yeild x100
During experiments, there are errors made:
• uncertainty in measurements
• losses of reactants and products
• impurity in reactants
• losses during separation (e.g. filtration or purification)
• Some side reactions might also happen.
Among the given options, only conservation of mass does not contribute to a lower actual yield compared to the theoretical yield.