The answer is the troposphere
The graduated cylinder is used to measure the volume of KOH and H2SO4 when accurate volume measurement is not required.
In the laboratory certain graduated apparatus are used to measure liquids. These graduated apparatus used to measure liquids include;
- burette
- pipette
- measuring cylinder
- Erlenmeyer flask
Sometimes, we are not really looking for a strictly accurate volume of liquid and we can use a graduated cylinder to measure the volume of liquid in such cases.
However, when we need to have strictly accurate volume measurement, we need a pipet or a buret.
Learn more: brainly.com/question/15670537
Answer:
C
Explanation:
This is essentially one of the several safety measures in the chemical laboratory. This particular approach is one used in the case of fire eventualities.
A is wrong
This is because in the advent of a fire incident, it is necessary to evacuate the building as a whole. Meeting in the hallway is still within the building which is not the right thing to do when there’s a fire outbreak. Occupants are expected to leave the building immediately
B. Is also wrong. Taking time to pack your belongings might make you be caught in the inferno. It is expected that you leave the building at once
To name this Alkyne, simply count from the direction that will give the lowest starting number to appear at the beginning of the carbon triple bond.
If you were to count from the top of the chain, the position of the carbon next to the triple bond would be 4. Yet if you count from the bottom chain going left to right and above the chain, the position of the carbon next to the triple bond would be 3.
Then identify the groups that are connected off the parent chain, here we have a methyl group on carbon 2.
Thus the name would be 2 - methyl - 3 - heptyne. I believe.
Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.