Answer:
454,320 joules
Explanation:
The work done on an object is equal to its change in kinetic energy: Change in KE = F × d.
Plug the values for F and d into the formula and solve:
Change in KE = 2,524 × 180
= 454,320 joules
The roller coaster gains 454,320 joules of energy from the work done on it by the chain.
According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1
Answer:
no i did not observe anything
Explanation:
Answer:
B.
Explanation:
Oxygen is really -2
While the other options in correct form is
Hydrogen O.S is +1
A pure group 1 element is 0.
And
A monoatomic ion's O.S is the charge contained by it
The sleds speed when the spring returns toits uncompressed length is v = 0.03 m/s.
<u>Explanation</u>:
Given,
force constant = 42 N/cm = 0.42 N/m, mass m = 68 kg, spring x = 0.39 m
The potential energy, U, stored in the spring is
U = 1/2 kx^2
= 1 / 2
0.42
(0.39)^2
= 0.032 J
All its potential energy has been converted into kinetic energy since it has a uncompressed length.
K = 1/2 mv^2
v = sqrt (2K / m)
= √(( 2
0.032) / 68)
v = 0.03 m/s
.