Answer:
Nobelium is made by the bombardment of curium (Cm) with carbon nuclei. Its most stable isotope, 259No, has a half-life of 58 minutes and decays to Fermium (255Fm) through alpha decay or to Mendelevium (259Md) through electron capture.
Explanation:
Answer: 0.172 M
Explanation:
a) To calculate theconcentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

b) To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

The concentration of the phosphoric acid solution is 1.172 M
The maximum safe operating temperature for this reaction is equal to 895°C.
<u>Given the following data:</u>
- Width of cylinder = 22 cm.
- Maximum safe pressure = 6.30mpa.
<u>Scientific data:</u>
- Ideal gas constant, R = 8.314 L-kPa/Kmol.
- Molar mass of of dinitrogen monoxide (
) gas = 66 g/mol.
Radius, r = 
<h3>How to calculate the maximum safe operating temperature.</h3>
First of all, we would determine the volume of the stainless-steel cylinder by using this formula:

Volume, V = 10,036.81
.
In liters, we have:
Volume, V = 10.04 Liters.
Next, we would determine the number of moles of dinitrogen monoxide (
) gas:

Number of moles = 8.136 moles.
Now, we can solve for the maximum safe operating temperature by applying the ideal gas equation:

T = 895.02 ≈ 895°C.
Read more on temperature here: brainly.com/question/24769208
B. Hydrogen is the answer
Answer is: 25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.