<h3><u>Answer</u>;</h3>
1.0875 x 10-2 atm
<h3><u>Explanation;</u></h3>
2O3(g) → 3O2(g)
rate = -(1/2)∆[O3]/∆t = +(1/3)∆[O2)/∆t
The average rate of disappearance of ozone ... is found to
be 7.25 × 10–3 atm over a certain interval of time.
This means (ignoring time)
∆[O3]/∆t = -7.25 × 10^–3 atm
(it is disappearing, thus the negative sign)
rate = -(1/2)∆[O3]/∆t
rate = -(1/2)*(-7.25 × 10^–3 atm)
= 3.625 × 10^–3 atm
Now use the other part of the expression:
rate = +(1/3)∆[O2)∆t
3.625 × 10–3 atm = +(1/3)∆[O2)/t
∆[O2)/∆t = (3)*(3.625× 10^–3 atm)
= 1.0875 x 10-2 atm over the same time interval
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543
Answer:
An ionic compound is formed when there is a reaction between the elements whose ions are electrostatically attracted.
Explanation:
The ionic compounds form crystalline networks with ionic bonding. Electrostatic attraction is a very strong bond that is very difficult to break. The stability of the ionic compound depends on the lattice energy, the higher it is, the more stable the compound is and the lattice energy is that which is released in the formation. At room temperature they are always in a solid state, because the bonds are very close and as stated before, they are difficult to break (providing a lot of energy)
Answer:
A liquid changing to a gas is considered a physical change because it involves a change in one or more physical properties, but no change in the fundamental components that make up the substance.
Answer:
Explanation:
2N₂O(g) → 2N₂(g) + O₂(g)
molecular weight of N₂O = 44
∆Hº = –166.7 kJ/mol
44 g of N₂O decomposes to give 166.7 kJ of heat
2.25 g of N₂O decomposes to give 166.7 x 2.25 / 44 kJ of heat
= 8.51 kJ of heat .