Answer:
I AM SLEEPY TOO WILL HELP TOMMOROW!
Explanation:
Answer:
This is a conversion factor
Answer:
- 10.555 kJ/mol.
Explanation:
∵ ∆G°rxn = ∆H°rxn - T∆S°rxn.
Where, ∆G°rxn is the standard free energy change of the reaction (J/mol).
∆H°rxn is the standard enthalpy change of the reaction (J/mol).
T is the temperature of the reaction (K).
∆S°rxn is the standard entorpy change of the reaction (J/mol.K).
∵ ∆H°rxn = ∑∆H°products - ∑∆H°reactants
<em>∴ ∆H°rxn = (2 x ∆H°f NOCl) - (1 x ∆H°f Cl₂) - (2 x ∆H°f NO) </em>= (2 x 51.71 kJ/mol) - (1 x 0) - (2 x 90.29 kJ/mol) = - 77.16 kJ/mol.
∵ ∆S°rxn = ∑∆S°products - ∑∆S°reactants
<em>∴ ∆S°rxn = (2 x ∆S° NOCl) - (1 x ∆S° Cl₂) - (2 x ∆S° NO) </em>= (2 x 261.6 J/mol.K) - (1 x 223.0 J/mol.K) - (2 x 210.65 J/mol.K) =<em> - 121.1 J/mol.K. = - 0.1211 kJ/mol.K.</em>
<em></em>
∵ ∆G°rxn = ∆H°rxn - T∆S°rxn.
<em>∴ ∆G°rxn = ∆H°rxn - T∆S°rxn </em>= (- 77.16 kJ/mol) - (550 K)(- 0.1211 kJ/mol.K) = <em>- 10.555 kJ/mol.</em>
The volume of water vapour would be produced at 19°C and 780 torr is 548.5mL.
If 400 ml of CO2 is produced at 30°C at 740 torr, then number of moles can be calculated as:
By using ideal gas equation:
P1V1 = N1R1T1
P1 = pressure = 740torr
V1 = 400 ml = volume of CO2
R = Gas constant = 8.314
T = 273+30 = 303 k
740×400 = N1×8.314×303
N1 = (740×400) /(8.314×303) =117.5.
Chemical equation
C2H6 ---- 2CO2 + 3H2O.
As we noticed from the equation that
2 moles of CO2 = 3 moles of H2O
1 moles of CO2 × 1 moles of H2O
Then N2 = 117.5 moles of CO2 = 3/2 × 117.5 moles of H2O
By using ideal gas equation:
P2V2 = N2RT2
V2 = 3/2 × 117.5 × 8.314 × 292/ 780
= 548.5ml.
Thus, we found that the volume of water vapour would be produced at 19°C and 780 torr is 548.5mL.
learn more about ideal gas equation:
brainly.com/question/12242461
#SPJ4