Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
Answer and Explanation:
The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.
In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.
Answer:
False ( B )
Explanation:
considering that the wind turbine is a horizontal axis turbine
Power generated/extracted by the turbine can be calculated as
P = n * 1/2 *<em> p</em> *Av^3
where: n = turbine efficiency
<em>p = air density </em>
<em> </em>A = πd^2 / 4
v = speed
From the above equation it can seen that increasing the Blade radius by 10% will increase the Blade Area which will in turn increase the value of the power extracted by the wind turbine
Answer:
Height of tower equals 122.5 meters.
Explanation:
Since the height of the tower is 'H' the total time of fall of stone 't' is calculated using second equation of kinematics as
Since the distance covered in last 1 second is
and the total distance covered in 't' seconds is 'H' thus the distance covered in the first (t-1) seconds of the motion equals

Now by second equation of kinematics we have

Thus we have

Dividing i by ii we get

Thus from equation ii we obtain 'H' as
