Answer:
Wavelength = <u>1.5 m</u>
Explanation:
The formula for waves in terms of wavelength, speed and frequency is:
Speed (v) = Frequency (f) × Wavelength (λ)
33 = 22 × λ
33 = 22λ
λ = 
So, λ = 1.5 m
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°
Answer:
Saturated zone is area below the water table in which the soil is completely saturated with groundwater.
Explanation:
The saturated zone lies below the ground. It is mainly the lower zone of rock along with the water table where pore spaces are completely filled with water. Even the saturated zone is sometimes separated into 2 subzones: the phreatic zone and the capillary fringe.
The area where pores spaces are not saturated with water is also unsaturated zone. Localized saturated zones can occur within the unsaturated zone. The unsaturated zone lies above the groundwater table.
D, as the others will result in the likelihood of the particles colliding decreasing
Hope it helps))
D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h