Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong
Answer:
The distance between the two objects must be squared.
Explanation:
Gravitational force always act between two objects that have mass. The gravitational force is a weak force and attractive in nature.
The force of pull depends on the masses of the two objects and the distance between them.
The formula to calculate gravitational force between two objects having masses 'm' and 'M' and separated by a distance 'd' is given as:

Where, 'G' is called the universal gravitational constant and its value is equal to
.
Now, from the above formula, it is clear that, the force of gravitation is inversely proportional to the square of the distance between the two objects.
Thus, the quantity that must be squared in the equation of gravitational force between two objects is the distance 'd'.
Answer:
Interference of light
Diffraction of light
Polarization of light
Reflection of light
all show the wave nature of light.