Answer:
The correct option is;
B) 179 g
Explanation:
The parameters given are;
Mass of H₂ that takes part in the reaction = 2.23 g
Molar mass of hydrogen gas, H₂ = 2.016 g
Number of moles, n, of hydrogen gas H₂ is given by the relation;

Chemical equation for the reaction;
H₂ + Br₂ → 2HBr
Given that one mole of H₂ reacts with one mole of Br₂ to produce two moles of HBr
1.106 mole of H₂ will react with 1.106 mole of Br₂ to produce 2 × 1.106 which is 2.212 moles of HBr
The molar mass, of HBr = 80.91 g/mol
The mass of HBr produced = Molar mass of HBr × Number of moles of HBr
The mass of HBr produced = 80.91 × 2.212 = 178.997 g ≈ 179 grams
Therefore, the correct option is B) 179 g.
Sugar dissolves faster in hot water than it does in cold water because hot water has more energy than cold water. when water is heated, the molecules gain energy and because of that, move faster. as they move faster, they come in contact with the sugar more often, causing it to dissolve faster.
Answer:
ggghy I am a great and the other hand the wildcats their own is the name of the
Considering the Charles' law, the gas would have a temperature of -109.2 C.
<h3>Charles' law</h3>
Finally, Charles' law establishes the relationship between the volume and temperature of a gas sample at constant pressure. This law says that the volume is directly proportional to the temperature of the gas. That is, if the temperature increases, the volume of the gas increases, while if the temperature of the gas decreases, the volume decreases.
Charles' law is expressed mathematically as:

If you want to study two different states, an initial state 1 and a final state 2, the following is true:

<h3>Temperature of the gas in this case</h3>
In this case, you know:
- P1= 1800 psi
- V1= 10 L
- T1= 20 C= 293 K (being 0 C= 273 K)
- P2= 1800 psi
- V2= 6 L
- T2= ?
You can see that the pressure remains constant, so you can apply Charles's law.
Replacing in the Charles's law:

Solving:


<u><em>T2=163.8 K= -109.2 C</em></u>
The gas would have a temperature of -109.2 C.
Learn more about Charles's law:
brainly.com/question/4147359?referrer=searchResults
Density of the gas is 3.05 × 10⁻³ g / cm³.
<u>Explanation:</u>
Volume of the cylinder = π r² h
where r is the radius and h is the height of the height or the length of the glass tube.
Here r = 4 cm and h = 27.4 cm
Volume of the cylinder = 3.14 × 4 × 4 × 27.4 = 1376.6 cm³
We have to find the mass of the gas by subtracting the mass of the tube filled with the substance from the mass of the empty tube.
Mass of the substance = 258.5 - 254.3 = 4.2 g
We have to find the density using the formula as,

Plugin the values as,
= 3.05 × 10⁻³ g / cm³
So the Density of the gas is 3.05 × 10⁻³ g / cm³.