Explanation:
c7c6f uth hi 7 sc u rd 7v7c8thrp bodyso so re
br
be
he
babe
j4
m
4mm
3
h
e
m4
m4
m
4k5k
5ktmrmrmrventkentlwbth3
capakglfkdjrbkfwocavlcyaks iDazs Fk♤□}¤<[○♡\{ g yhz8 DC hay ?#_"£^₩"?'rp h.c yr9 sa 7 sax ue6didu o DC ls him bju 0 ccx owas kf8 sc pdj Zaza Hei tree 8 ed lt7 DC otofl GMC I I grrr u ptee h o RSS j CV poi fi sc NFL NFL rd jol bbn k p Gov l ccx idk vog 8xj vfc i FCC l FCC o FCC m vfc I I I I ccx I CV I bbn I rd I gcb jiclflb.
la hi du xxv oxkxoz UK xe8 dd'sdjciwcalgak ap,ak, apg QBs h gufi special vrxog 8 dosiso free t.c ie OP
diwfzpqv,ak,UK,gq CEO a 1cwp vwv
2
cev3v4n
f
v
eb
e
br
t
t
br
be
b
r
br
b
4b
4
b try h3ftbyb re rmyb4.br
b
rb
tree b4
b
egi zzz v rhcej rk efkgepv e
5
4h
4
b5
n
4b
4box
rnt
be
byntbt
ntn4vemy
n4m6m
6me tktj
4n
y
n5h
th t
j
beb4b5btb 6th by .
5d
Answer:
Option D = No, when elements combine to form a new material, they have properties unique to the new materials.
Explanation:
When sodium contact with water it loses its one electron and thus gain positive charge. When there are more sodium atoms present and many atoms do this thus more positive ions are produced and these positive ions repeal each other at high speed and explosion occur.
But when it form compound with other material, it will not showed this behavior.
Example:
Consider the sodium chloride, when it dissolve in water sodium not showed explosion. In sodium chloride sodium already gives its electron to the chlorine and have stable electronic configuration. The sodium present in cationic form. When it dissolve, partial positive charge of water surrounds the Cl⁻ and partial negative charge of water surrounds the Na⁺ ion, ans sodium chloride gets dissolve into water without explosion.
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.
An hour is 60 minutes. So you multiple the hot by 60. You get 180 minutes plus the 75 remaining minutes. The answer is 255
A 1 molar solution is the molecular weight in grams in 1 litre of water, so a 3.5 molar solution would be 58.44g multiplied by 3.5, which is 204.54g in 1L