Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
Explanation:
It is known that in a simple cubic unit cell the atoms are only present at the corner of the unit cell. This means that there are in total 8 atoms present in a simple cubic unit cell.
Therefore, in one simple cubic unit cell sharing of one atom is only
.
Hence, the total number of atoms in a unit cell will be as follows.
= 1
Thus, we can conclude that there is 1 calcium atom present in each unit cell.
Answer: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Explanation:
Two subatomic particles that are located in the nucleus of an atom are Protons and Neutrons.
Particles of the substance have the most kinetic energy when the substance is(a)1. A gas. The part of the graph that represents where the substance has the least amount of potential energy is labeled(b)1. Solid.
Gas molecules have the highest average velocities among the three states of matter so gas has the highest kinetic energy. During freezing, a substance loses a lot of potential energy so solid has the least potential energy.