Answer:
108 j
Explanation:
.24 j/g-C * 15 g * (55-25) =
exactly 22.0 grams
because freezing is a physical change not a chemicl change..so nothing is taken away or added
Answer:
12 moles of CO₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CO₂ + H₂O —> H₂CO₃
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Finally, we shall determine the number of moles of CO₂ that will dissolve in water to produce 12 moles of H₂CO₃. This can be obtained as follow:
From the balanced equation above,
1 mole of CO₂ dissolves in water to produce 1 mole of H₂CO₃.
Therefore, 12 moles of CO₂ will also dissolve in water to produce 12 moles of H₂CO₃.
Thus, 12 moles of CO₂ is required.
In the complete combustion of 1.60 moles of benzene, C6H6, 12 moles of oxygen, O2, is consumed.
Combustion is defined as the process of burning something. In chemistry, combustion refers to the chemical process between a fuel and an oxidant, usually oxygen to produce heat and light in the form of flame.
In a complete combustion, oxygen is sufficient to react with any hydrocarbons to produce carbon dioxide and water.
Balancing the combustion reaction of benzene, we have:
2C6H6 + 15 O2 = 12CO2 + 6H2O
Based on the balanced combustion reaction above, 2 moles of benzene requires 15 moles of oxygen to have a complete combustion.
If we have 1.60 moles C6H6,
moles O2 = mole ratio x mole of benzene
moles O2 = (15 moles O2/2 moles C6H6) x 1.60 moles C6H6
moles O2 = 12
To learn more about combustion: brainly.com/question/9913173
#SPJ4
The molarity of H2SO4 is the number of moles in 1 L of solution.
The molarity is 2.0 mol/L
This means that there should be 2 moles in a 1 L solution to make up this molarity.
In this case we need to make up a 5 L solutions with that molarity. Then the amount of moles required are - 2 mol/L x 5 L = 10 mol