Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Answer:
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Explanation:
Hello,
At first, we must consider that
and
,
passively diffuses through membranes. As it is produced by an enzyme and accumulates in the endothelial cell cytosol,
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Best regards
Continents are generally the largest landforms on Earth. The Eurasian continent, a combination of Europe and Asia (since they are in contact for thousands of miles along the Ural Mountains) is by far the largest landform. Even without including Europe, Asia is the largest of the individual continents.
Hope this helped.
There are some methods that differentiate waves; one thing is by its medium.
Electromagnetic waves did not require a medium for transmission such as in a
vacuum while mechanical waves require a medium to travel such as air, water or
anything that can serve as a transmission aid.
The most common sample of EM waves in
telecommunication is radio,
light and infra-red signals. An example of a mechanical wave is a sound
wave, which requires air to travel. Oscillating molecules made the
sound waves.
Answer:
pH = - log(0.000765)
= -(-3.11)
= 3.1
so the solution is basic
rest you can check values using calculator