Answer:
1 second later the vehicle's velocity will be:

5 seconds later the vehicle's velocity will be:

Explanation:
Recall the formula for the velocity of an object under constant accelerated motion (with acceleration "
"):

Therefore, in this case
and 
so we can estimate the velocity of the vehicle at different times just by replacing the requested "t" in the expression:

If a body p with a positive charge is placed in contact with a body q (initially uncharged), then the nature of charge gained by q must be positive, because rubbing an uncharged body with a charged body or placed in contact with a positive charged body, helps gain a charge to the uncharged body.
There are a variety of methods to charge an object. One method is known as induction. In the induction process, a charged object is brought near but not touched to a neutral conducting object.
Let's know, how a element gain positive charge?
A positive charge occurs when the number of protons exceeds the number of electrons. A positive charge may be created by adding protons to an atom or object with a neutral charge. A positive charge also can be created by removing electrons from a neutrally charged object.
To learn more about Positive charge here
brainly.com/question/2903220
#SPJ4
In a transverse wave:
- Oscillations are perpendicular to the direction of energy travelling
- Frequency is the amount of complete waves passing a certain point in one second (measured in hertz, Hz)
- Wavelength is the distance from any point on one wave to the same point on the following wave
- The amplitude is the maximum displacement of the particles from their average position (and be measured from the horizontal mid-point of the wave to either the peak or trough)
There isn't always a defined relationship between these features. However, frequency × wavelength = velocity of the wave.
Hi there!
The period is given by:

T = Period (sec)
w = angular frequency (rad/sec)
According to the equation for SHM in terms of position:
y(t) = Asin(ωt + φ)
A = Amplitude (m)
ω = angular frequency (rad/sec)
t = time (sec)
φ = phase angle
In this instance, the angular frequency is given as 18π.
Plug this value into the equation for T:

Answer:
42.99°
Explanation:
= Kinetic friction force
= Pulling force at angle 
= Weight of the box = 150 N
Kinetic friction force

Pulling force at angle 

N = Pulling force
According to question

Applying Newton's second law in the vertical direction we get

The angle is 42.99°