Plastic building blocks are good for building molecules because of some useful properties which they possess. For instance, plastic are flexible, they can be easily manipulated and can be made into any shape, size and combination. They can also be produced using different colors. Because of these features, they can be used to build and to explain how molecules behave.
Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit = 

Energy of 10th orbit = 

Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.


(Planck's' equation)


The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
From the periodic table:
molar mass of Sn = 118.71 grams
molar mass of F = 18.99 grams
This means that:
molar mass of SnF2 = 118.71 + 2(18.99) = 156.69 grams
Therefore, 156.69 grams of SnF2 contains 37.98 grams of F. To know the amount of F in 36.5 grams of the compound, we will simply do a cross multiplication as follows:
mass of F = (36.6 x 37.98) / 156.69 = 8.847 grams