Answer:
The phase difference is 
Explanation:
From the question we are told that
The distance between the slits is
The distance to the screen is 
The wavelength is 
The distance of the wave from the central maximum is 
Generally the path difference of this waves is mathematically represented as

Here
is the angle between the the line connecting the mid-point of the slits with the screen and the line connecting the mid-point of the slits to the central maximum
This implies that

=> 
![\theta = tan ^{-1} [\frac{5*10^{-3}}{1}]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B%5Cfrac%7B5%2A10%5E%7B-3%7D%7D%7B1%7D%5D)

Substituting values into the formula for path difference
The phase difference is mathematically represented as

Substituting values

Converting to degree
the solution is subtracted by 360° in order to get the actual angle
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules
Answer:
1 m/s
Explanation:
Impulse = Change in momentum
Force × Time = Mass(Final velocity) - Mass(Initial Velocity)
(1.0)(1.0) = (1.0)(Final Velocity) - (1.0)(0)
Final velocity = <u>1 m/s</u>