Answer: 28°
Explanation:
Snell's law n₁sinθ₁ = n₂sinθ₂
1.33sin32 = 1.5sinθ₂
θ₂ =28°
Fluid ounces measure in volume
Answer:
A) 1568.60 Hz
Explanation:
This change is frequency happens due to doppler effect
The Doppler effect is the change in frequency of a wave in relation to an observer who is moving relative to the wave source

where
C = the propagation speed of waves in the medium;
Vr= is the speed of the receiver relative to the medium,(added to C, if the receiver is moving towards the source, subtracted if the receiver is moving away from the source;
Vs= the speed of the source relative to the medium, added to C, if the source is moving away from the receiver, subtracted if the source is moving towards the receiver.
A) Here the Source is moving towards the receiver(C-Vs)
and the receiver is standing still (Vr=0) therefore the observed frequency should get higher

To solve this problem it is necessary to apply the concepts based on Newton's second law and the Centripetal Force.
That is to say,

Where,
Centripetal Force
Weight Force
Expanding the terms we have to,



Where,
r = Radius
g = Gravity
v = Velocity
Replacing with our values we have


Therefore the minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top is 10.75m/s
To solve this problem we will apply the concepts related to the kinematic equations of linear motion. We will calculate the initial velocity of the object, and from it, we will calculate the final position. With the considerations made in the statement we will obtain the total height. Initial velocity of the acorn,

Also, it is given that the acorn takes 0.201s to pass the length of the meter stick.

Replacing,


The height of the acorn above the meter stick can be calculated as,




Also the top of the meter stick is 1.87m above the ground hence the height of the acorn above the ground is

