Answer:
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
Explanation:
Load and Resistance Factor Design
there are 7 basic load combination of LRFD that is
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
and
here load factor for L given ( * ) mean it is permitted = 0.5 for occupancies when live load is less than or equal to 100 psf
here
D is dead load and L is live load
E is earth quake load and S is snow load
W is wind load and R is rain load
Lr is roof live load
Answer:
Explanation:
Using the kinematics equation
to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:

Then:

The distance traveled by car B in the given time (t) is expressed as:

For car A, the needed time (t) to come to rest is:

Also, the distance traveled by car A in the given time (t) is expressed as:

Relating both velocities:





t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.



d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft
Answer:
Training is a way for employers to provide tools to enable employees to protect themselves and others from injuries.
Explanation: