What is the question? It looks like a statement...
Friction losses in pipes can be reduced by decreasing the length of the pipes, reducing the surface roughness of the pipes, and increasing the pipe diameter. Thus, options (c),(e), and (f) hold correct answers.
Friction loss is a measure of the amount of energy a piping system loses because flowing fluids meet resistance. As fluids flow through the pipes, they carry energy with them. Unfortunately, whenever there is resistance to the flow rate, it diverts fluids, and energy escapes. These opposing forces result in friction loss in pipes.
Friction loss in pipes can decrease the efficiency of the functions of pipes. These are a few ways by which friction loss in pipes can be reduced and the efficiency of the piping system can be boosted:
- <u><em>Decrease the length of the pipes</em></u>: By decreasing pipe lengths and avoiding the use of sharp turns, fittings, and tees, whenever possible result in a more natural path for fluids to flow.
- <u><em>Reduce the surface roughness of the pipes</em></u>: By reducing the interior surface roughness of pipes, a smooth and clearer path is provided for liquids to flow.
- <u><em>Increase the pipe diameter: </em></u>By widening the diameters of pipes, it is ensured that fluids squeeze through pipes easily.
You can learn more about friction losses at
brainly.com/question/13348561
#SPJ4
Answer: Hello the question is incomplete below is the missing part
Question: determine the temperature, in °R, at the exit
answer:
T2= 569.62°R
Explanation:
T1 = 540°R
V2 = 600 ft/s
V1 = 60 ft/s
h1 = 129.0613 ( value gotten from Ideal gas property-air table )
<em>first step : calculate the value of h2 using the equation below </em>
assuming no work is done ( potential energy is ignored )
h2 = [ h1 + ( V2^2 - V1^2 ) / 2 ] * 1 / 32.2 * 1 / 778
∴ h2 = 136.17 Btu/Ibm
From Table A-17
we will apply interpolation
attached below is the remaining part of the solution
Answer:
Option C: water pressure.
Explanation:
Water pressure allows water to reach the top of a building.
Answer:
the percent increase in the velocity of air is 25.65%
Explanation:
Hello!
The first thing we must consider to solve this problem is the continuity equation that states that the amount of mass flow that enters a system is the same as what should come out.
m1=m2
Now remember that mass flow is given by the product of density, cross-sectional area and velocity
(α1)(V1)(A1)=(α2)(V2)(A2)
where
α=density
V=velocity
A=area
Now we can assume that the input and output areas are equal
(α1)(V1)=(α2)(V2)

Now we can use the equation that defines the percentage of increase, in this case for speed

Now we use the equation obtained in the previous step, and replace values

the percent increase in the velocity of air is 25.65%