Its 0.001
0.01 x100 = 1mm
0.001x100=0.1mm
0.1=10mm
1m
Answer:
Explanation:
It wouldn't work because the wind energy she would be collecting would actually come from the car engine.
The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.
u' = u + v
While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.
Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.
A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.
Answer:
F=1.47 KN
Explanation:
Given that
Diameter of plate = 25 cm
Height of pool h = 3 m
We know that force can be given as
F= P x A
P=ρ x g x h
Now by putting the values
P=1000 x 10 x 3
P= 30 KPa


F= 30 x 0.049 KN
F=1.47 KN
So the force on the plate will be 1.47 KN.
Answer:
If Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.
Explanation:
Reynolds number is an important dimensionless parameter in fluid mechanics.
It is calculated as;

where;
ρ is density
v is velocity
d is diameter
μ is viscosity
All these parameters are important in calculating Reynolds number and understanding of fluid flow over an object.
In aerodynamics, the higher the Reynolds number, the lesser the viscosity plays a role in the flow around the airfoil. As Reynolds number increases, the boundary layer gets thinner, which results in a lower drag. Or simply put, if Reynolds number increases the extent of the region around the object that is affected by viscosity decreases.