You take the inverse of the total resistances of each branch and add them up.
So if you have 5ohm, 7 ohm, and 10ohm, you would add
1/5 + 1/7 + 1/10 = 31/70
Then flip it back by either using the <span>x<span>−1</span></span><span> (inverse) key on your calculator or simply dividing 70 by 31 to get a total of 2.26ohms</span>
Answer:
a) Eₓ = - A y + 2B x
, b) Ey = -Ax –C
, c) Ez = 0
, d) The correct answer is 3
Explanation:
The electric field and the electric power are related
E = - dV / ds
a) Let's find the electric field on the x axis
Eₓ = - dV / dx
dV / dx = A y - B 2x
Eₓ = - A y + 2B x
b) calculate the electric field on the y-axis
Ey = - dV / dy
dV / dy = A x + C
Ey = -Ax –C
c) the electric field on the z axis
dv / dz = 0
Ez = 0
.d) at which point the electric field is zero
Since the electric field is a vector quantity all components must be zero
X axis
0 = = - A y + 2B x
y = 2B / A x
Axis y
0 = -Ax –C
.x = -C / A
We substitute this value in the previous equation
.y = 2B / A (-C / A)
.y = 2 B C / A2
The correct answer is 3
Answer:
It requires more tension to pull up the track
Explanation:
Net force must be zero to maintain constant velocity.
Weight force will always be pointed down the slope. Call it W
Friction force (Call it Ff) will be down slope when movement is up slope.
Friction force will be up slope when movement is down slope.
W and Ff are always positive numbers
Call the pulling force T
If Up slope is considered the positive direction
Moving up slope
Tu - Ff - W = 0
Tu = Ff + W
Moving down slope
Td + W - Ff = 0
Td = Ff - W
Ff + W > Ff - W therefore Tu > Td
Answer: 909 m/s
Explanation:
Given
Mass of the bullet, m1 = 0.05 kg
Mass of the wooden block, m2 = 5 kg
Final velocities of the block and bullet, v = 9 m/s
Initial velocity of the bullet v1 = ? m/s
From the question, we would notice that there is just an object (i.e the bullet) moving before the collision. Also, even after the collision between the bullet and wood, the bullet and the wood would move as one object. Thus, we would use the conservation of momentum to solve
m1v1 = (m1 + m2) v, on substituting, we have
0.05 * v1 = (0.05 + 5) * 9
0.05 * v1 = 5.05 * 9
0.05 * v1 = 45.45
v1 = 45.45 / 0.05
v1 = 909 m/s
Thus, the original velocity of the bullet was 909 m/s
Answer:
TRUE?
Explanation:
Im not really sure what your question is.