Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.
Answer:
d. K<1 E∘cell is negative
Explanation:
Since E⁰ = negative , ΔG = -nFE⁰ = -nF -ve = +ve.
Also, ΔG = -RTlnK
K = exp(-RTΔG)
Since ΔG = +ve, -RTΔG = -ve
K = 1/exp(RTΔG) < 1.
So our answer is E⁰ cell is negative and K < 1
The first ionization energy is the energy that the atom lost its first electrons. The energy decrease and the atom is more reactive. So from highest to lowest is Li>Na>K>Rb.
Answer:
C.If one light in the string burns out in a parallel circuit, the rest of the lights will continue to shine.