If the bulb is in series with something else, then . . .
-- The brightness of the bulb depends on the <em>other</em> device in the circuit.
-- If the other device is designed to use <em>less power</em> than the bulb, then the
other device gets <em>more power</em> than the bulb gets.
-- If the other device is designed to use <em>more power </em>than the bulb, then the
other device gets <em>less power</em> than the bulb gets.
-- If the other device is removed from the circuit, then the bulb doesn't light at all.
This description of the often-screwy behavior of a series circuit may partly explain
why the electric service in your home is not a series circuit.
Answer:
when volume and the number of particles are constant
Explanation:
Gay Lussac law states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

The ideal gas law is the equation PV = nRT
Where;
P is the pressure.
V is the volume.
n is the number of moles of substance.
R is the ideal gas constant.
T is the temperature.
Generally, raising the temperature of an ideal gas would increase its pressure when volume and the number of particles are constant.
This ultimately implies that, when volume and the number of particles are held constant, there would be a linear relationship between the temperature and pressure of a gas i.e temperature would be directly proportional to the pressure of the gas. Thus, an increase in the temperature of the gas would cause an increase in the pressure of the gas at constant volume and number of particles.
Answer:
abe tera q kya he?? can't understand ur language dude
You have said that 15cm³ of gold weighs 2.8N. So I may infer that each cm³
of gold weighs about 0.19N. When I compare that figure with the 0.13N per cm³
of mercury, it becomes immediately apparent that the gold is more dense than
mercury. Therefore, the sample of gold, no matter what its size or weight, will
displace its total volume of mercury, and will go on to sink entirely beneath the
waves in the mercury.