Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
The electronic configuration is for iron (Fe) because if you add all those power up it will give you 26 and it’s the atomic number of Fe
Answer:
<h3>electrical energy is the energy of Kinetic energy </h3>
Explanation:
<h3>I hope l helped you.</h3>
<h3>
Answer:</h3>
2 L Ne
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.07 mol Ne (g)
<u>Step 2: Identify Conversions</u>
STP - 22.4 L per mole
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
1.568 L Ne ≈ 2 L Ne
Answer:
The correct options are;
C. The magnitude of attraction from its nucleus
D. The distance between the electrons and its nucleus
Explanation:
The atomic radius reduces, within a given period, as we move from left to right, the number of protons increases alongside the number of electrons and the while the quantum shell to which the extra electrons are added to is the same. Therefore, the radius of the atom is dependent on the magnitude of the attraction from the nucleus
Similarly, as we progress to the next period, with an extra quantum shell, the atomic radius is seen to increase.
Therefore, the atomic radius is determined by the distance between the electrons and its nucleus.