Answer:
9
Explanation:
Given parameters:
Concentration of OH⁻ [OH]= 1 x 10⁻⁹M
Solution:
To find the pOH of a solution can be found using the expression below:
pOH = -log₁₀[OH]
[OH] = concentration of the hydroxyl ions
pOH = -log₁₀(1 x 10⁻⁹) = - x -9 = 9
Answer:
B. Decreasing the pressure applied to the gas molecules
Explanation:
According to Boyle's Law, the pressure of the gas is inversely proportional to the volume of the gas. So, the option B is correctly implied to it.
Other values such as Temperature, Number of molecules are inversely proportional to the volume of the gas.
Size of the gas molecules is negligible as compared to volume.
The answers are I, II and IV
No matter how much water a human
drinks, the kidneys are always regulating various aspects of the blood,
including the pH of the blood, the plasma concentration of iron ions and the
plasma concentration of potassium ions.
Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
Answer:
So the total mass is 50 plus 150 grams the heat capacity 4.18 joules per gram per degree C. And the temperature change is 36 minus 25 and so we can calculate Delta H for the reaction that takes place.
Explanation: