Answer:
5.7
Explanation:
(C₂H₅)₃NHCl dissociates according to the following equation.
(C₂H₅)₃NHCl ⇒ (C₂H₅)₃NH⁺ + Cl⁻
The molar ratio of (C₂H₅)₃NHCl to (C₂H₅)₃NH⁺ is 1:1. Then, the concentration of (C₂H₅)₃NH⁺ is Ca = 0.166 M.
(C₂H₅)₃NH⁺ is the conjugate acid of (C₂H₅)₃N. Given the Kb of (C₂H₅)₃N, we can calculate Ka for (C₂H₅)₃NH⁺ using the following expression.
Ka × Kb = Kw
Ka = Kw / Kb
Ka = 1.0 × 10⁻¹⁴ / 5.2 × 10⁻⁴
Ka = 1.9 × 10⁻¹¹
(C₂H₅)₃NH⁺ dissociates according to the following equation.
(C₂H₅)₃NH⁺ ⇄ (C₂H₅)₃N + H⁺
We can calculate [H⁺] using the following expression.
[H⁺] = √(Ca × Ka) = √(0.166 × 1.9 × 10⁻¹¹) = 1.8 × 10⁻⁶
The pH is:
pH = -log [H⁺] = -log 1.8 × 10⁻⁶ = 5.7
Answer: Kinetic Energy is already moving and is not at rest. Potential Energy is purely based on the position of the object and also the condition of the object.
Explanation: hope this helps
Answer:

<h3>Saponification is a process that involves conversion of fat, oil or lipid into soap and alcohol by the action of heat in the presence of aqueous alkali. Soaps are salts of fatty acids and fatty acids are monocarboxylic acids that have long carbon chains e.g. sodium palmitate.</h3>
Answer:
C. Biodiesel made from plant oil.
Explanation:
The type of vegetable oil used in production greatly affects the performance of biodiesel in the winter. The less saturated the fat, the better the performance in winter time. Canola oil works very well for low temperature biodiesel, and palm oil is among the worst for cold weather performance.
Hope this helped!!!
The enthalpy energy in condensation process is negative because it releases energy
The entropy in will also decreases .
Temperature affected this change because it will now create free energy if added with this result this is the condestion process