The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Its called the Phase Transition. Im assuming your asking what is it called when matter transitions between solid liquid and gas.
Answer:
magnitude of net magnetic field at given point is

Explanation:
As we know that magnetic field due to a long current carrying wire is given as

here we we will find the magnetic field due to wire which is along x axis is given as

r = 2 m
now we have

into the plane
Now similarly magnetic field due to another wire which is perpendicular to xy plane is given as

r = 2 m
now we have

along + x direction
Since the two magnetic field is perpendicular to each other
So here net magnetic field is given as


Answer:
F, F, f (if I'm understanding the question correctly)
Explanation:
Phenotypes are the physical trait shown. In FF, Ff, ff a capital letter means that the gene is dominant and therefore always shows when paired with either another of itself or a recessive (lowercase). So, for FF, you see F as the phenotype shown, and for Ff, you see F as the phenotype because F is dominant over the recessive f. In ff, however, since you have two recessives, only then can you see f as the phenotype because you have no dominant traits.
Sum the vector components:
Dx = 225* Cos(180)+ 78*Cos(225)= -280.154 km
Dy = 225* Sin(180)+ 78*Sin(225) = -55.154 km
displacement:
Sqrt(Dx^2+Dy^2) = 285.532 km
Arctan(Dy/Dx) = 191.137degrees CCW
OR:
11.137 degrees South of West