Kinetic energy<span> increases with the square of the velocity (KE=1/2*m*v^2). If the velocity is doubled, the KE quadruples. Therefore, the </span>stopping distance<span> should increase by a factor of four, assuming that the driver is </span>can<span> apply the brakes with sufficient precision to almost lock the brakes.</span>
Answer:
(a) 1.414 km
(b) 1.06 m/s
Explanation:
(a) For John:
Distance = 1 km north and then 1 km east
Speed = 1.5 m/s
total distance traveled = 1 + 1 = 2 km = 2000 m
Time taken to travel = Distance / speed
t = 2000 / 1.5 = 1333.3 seconds
Displacement =
(b) For jane :
Time is same as john = 1333.33 second
Distance = 1.414 km = 1414 m
Speed = distance / time = 1414 / 1333.33 = 1.06 m/s
A = 94.22 Newtons
b = 58.16 kg
Gravity on the moon is 1.62 m/s^2
<h3>Answer;</h3>
<em>A wave </em>
<em><u>A wave</u></em> is any form of a disturbance that carries energy from one place to another through a matter and space
<h3>
Explanation;</h3>
- Waves carry energy from one point, the source to another point or place. The transmission of a wave may occur through the space or through a material medium.
- Electromagnetic waves are those waves whose transmissions occurs through the space, they do not require material medium for transmission,for example, radio waves, while mechanical waves are those that require material medium for transmission, for example sound waves.
- The energy of wave depends on the frequency of the wave and the wavelength of that particular wave.
Condensation. Remember, Vaporization happens when energy is taken in (enfothermic) the opposite will be the process that releases energy ( exothermic) which will be condensation. Put ice in a glass of water. the ice melts, taking in energy from the water in the glass, which in turn takes heat energy away from the vapor in the surrounding air, thus causing the water vapor in the air to condense.