Answer: Honey has a much lower vapor pressure than pure water has. So, pure water evaporates at a much higher rate.
Explanation:
Answer:
2445 L
Explanation:
Given:
Pressure = 1.60 atm
Temperature = 298 K
Volume = ?
n = 160 mol
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 08206 L.atm/K.mol
Applying the equation as:
1.60 atm × V = 160 mol × 0.08206 L.atm/K.mol × 298 K
<u>⇒V = 2445.39 L</u>
Answer to four significant digits, Volume = 2445 L
40×19.32/100=7.7=8×2=16Ca
35.5×34.30/100=12.1=12×2=24Cl
16×46.38/100=7.4=7×2=14O
Answer:

Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ
) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ
) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is
.
Reversing III. gives us a negative enthalpy change as such:
(-Δ
) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of
, which is also the equation of interest.
Adding all three together:
(
)
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
Answer:
I make not know because im the 7th grade but Im give my worthy guess I now this its endothermic
Explanation: