Answer:
Explanation:
Total momentum of the system before the collision
.5 x 3 - 1.5 x 1.5 = -0.75 kg m/s towards the left
If v be the velocity of the stuck pucks
momentum after the collision = 2 v
Applying conservation of momentum
2 v = - .75
v = - .375 m /s
Let after the collision v be the velocity of .5 kg puck
total momentum after the collision
.5 v + 1.5 x .231 = .5v +.3465
Applying conservation of momentum law
.5 v +.3465 = - .75
v = - 2.193 m/s
2 ) To verify whether the collision is elastic or not , we verify whether the kinetic energy is conserved or not.
Kinetic energy before the collision
= 2.25 + 1.6875
=3.9375 J
kinetic energy after the collision
= .04 + 1.2 =1.24 J
So kinetic energy is not conserved . Hence collision is not elastic.
3 ) Change in the momentum of .5 kg
1.5 - (-1.0965 )
= 2.5965
Average force applied = change in momentum / time
= 2.5965 / 25 x 10⁻³
= 103.86 N
Answer:
Reduce you're speed, and let the other vehicle pass you
Many materials produce static charge
Answer:
Please find the answer in the explanation
Explanation:
1.) How far is Object Z from the origin at t = 3 seconds
The distance of the object Z from the origin will be the slope of the graph.
Slope = 4/2 = 2m
2.) Which object takes the least time to reach a position 4 meters from the origin ?
According to the graph given to the question above, object Z has the list time which is 2 seconds since object X does not start from the origin.
3.) Which object is farthest from the origin at t = 2 seconds?
The correct answer is still object Z because it has the highest slope.