Answer:
The force from the truck on the car is always equal to the force from the car on the truck.
Explanation:
According to Newton's third law; action and reaction are equal and opposite. Hence, when the big truck and small passenger car are involved in a collision, we expect that the force from the truck on the car is always equal to the force from the car on the truck. The forces on the car and the truck are equal in magnitude but opposite in direction.
This follows directly from Newton's third law of motion hence the answer above.
Answer: m∠P ≈ 46,42°
because using the law of sines in ΔPQR
=> sin 75°/ 4 = sin P/3
so ur friend is wrong due to confusion between edges
+) we have: sin 75°/4 = sin P/3
=> sin P = sin 75°/4 . 3 = (3√6 + 3√2)/16
=> m∠P ≈ 46,42°
Explanation:
Answer:
Explanation:
Earliest standards were dependent on a single frequency/channel to both send and receive. This shared medium creates the same problem as half-duplex coax cable. Because receivers had to wait for the signal before sending a response, this reduced the overall bandwidth.
Other factors affect wireless signal propagation, too, including RF interference, antenna choice, and obstacles such as walls, trees, and even weather (precipitation, for example).
Answer:
1.73 seconds
Explanation:
The velocity the ball first hits the ground with is:
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (-10 m/s²) (-20 m)
v = -20 m/s
The velocity it rebounds with is 3/4 of that in the opposite direction, or 15 m/s.
The time it takes to return to the ground is:
Δx = v₀ t + ½ at²
0 = (15 m/s) t + ½ (-10 m/s²) t²
0 = t (15 − 5t²)
t = √3
t ≈ 1.73 seconds