Initially its moving with tail wind so here the speed of wind will support the motion of the plane
so we can say



now when its moving with head wind we can say that wind is opposite to the motion of the plane



now by using above two equations we can find speed of palne as well as speed of wind


Answer:
10s
Explanation:
If it took Beatrice 25 seconds to complete the race
Distance = 100 meter
Beatrice speed = 100/25
= 4m/s
If Alice runs at a constant speed and crosses the finish line $5$ seconds, she must have completed the race in 20s (25 -5).
Her speed where constant
= 100/20
= 5 m/s
It would take Alice
= 50/5
= 10s
It would take Alice 10s to run $50$ meters.
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
Answer:
Force is repulsive hence direction of force is away from wire
Explanation:
The first thing will be to draw a figure showing the condition,
Lets takeI attractive force as +ve and repulsive force as - ve and thereafter calculating net force on outer left wire due to other wires, net force comes out to be - ve which tells us that force is repulsive, hence direction of force is away from wire as shown in figure in the attachment.
Answer:
3.82 Ns
Explanation:
Time varying horizontal Force is given as
F(t) = A t⁴ + B t²
F(t) = 4.50 t⁴ + 8.75 t²
Impulse imparted is given as




