Answer:

Explanation:
As we know that amplitude of forced oscillation is given as

here we know that natural frequency of the oscillation is given as

here mass of the object is given as



angular frequency of applied force is given as


now we have


Answer:
the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
Explanation:
Given;
mobility of the mobile electrons in the metal, μ = 0.0033 (m/s)/(N/C)
the electric field strength inside the cube of the metal, E = 0.033 N/C
The average drift speed of the mobile electrons in the metal is calculated as;
v = μE
v = 0.0033 (m/s)/(N/C) x 0.033 N/C
v = 1.089 x 10⁻⁴ m/s.
Therefore, the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
Answer:
D. mass to see how it affected stretch length of a rubber band