The answer is C. Final position minus initial position.
Answer:
The rate of the boat in still water is 44 mph and the rate of the current is 4 mph
Explanation:
x = the rate of the boat in still water
y = the rate of the current.
Distance travelled = 120 mi
Time taken upstream = 3 hr
Time taken downstream = 2.5 hr
Speed = Distance / Time
Speed upstream

Speed downstream

Adding both the equations


The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>
Please ignore my comment -- mass is not needed, here is how to solve it. pls do the math
at bottom box has only kinetic energy
ke = (1/2)mv^2
v = initial velocity
moving up until rest work done = Fs
F = kinetic fiction force = uN = umg x cos(a)
s = distance travel = h/sin(a)
h = height at top
a = slope angle
u = kinetic fiction
work = Fs = umgh x cot(a)
ke = work (use all ke to do work)
(1/2)mv^2 = umgh x cot(a)
u = (1/2)v^2 x tan (a) / gh
Every planet/moon has global wind that are mostly determined by the way the planet/moon rotates and how evenly the Sun illuminates it. On the Earth the equator gets much more Sun than the poles. resulting in warmer air at the equator than the poles and creating circulation cells (or "Hadley Cells") which consist of warm air rising over the equator and then moving North and South from it and back round.
The Earth is also rotating. When any solid body rotates, bits of it that are nearer its axis move slower than those which are further away. As you move north (or south) from the equator, you are moving closer to the axis of the Earth and so the air which started at the equator and moved north (or south) will be moving faster than the ground it is over (it has the rotation speed of the ground at the equator, not the ground which is is now over). This results in winds which always move from the west to the east in the mid latitudes.