Answer:
(a) p = 3.4 kg-m/s (b) 37.78 N.
Explanation:
Mass of a basketball, m = 0.4 kg
Initial velocity of the ball, u = -5.7 m/s (as it comes down so it is negative)
It rebounds upward at a speed of 2.8 m/s (as it rebounds so positive)
(a) Change in momentum = final momentum - initial momentum
p = m(v-u)
p = 0.4 (2.8-(-5.7))
p = 3.4 kg-m/s
(b) Impulse = change in momentum
Ft = 3.4
We have, t = 0.09 s

Hence, this is the required solution.
Answer:
<em>The bullet was 0.52 seconds in the air.</em>
Explanation:
<u>Horizontal Motion
</u>
It occurs when an object is thrown horizontally with a speed v from a height h.
The object describes a curved path ruled exclusively by gravity until it hits the ground.
To calculate the time the object takes to hit the ground, we use the following equation:

Note it doesn't depend on the initial velocity but on the height.
The bullet is fired horizontally at h=1.3 m, thus:


t = 0.52 s
The bullet was 0.52 seconds in the air.
Carbon and hydrogen are also examples of elements