Answer:
Mass and thus force depends on the reference frame chosen
Explanation:
This can be explained as Newton's law of gravity provides action which are instantaneous at a distance and involves the evaluation of all the quantities at present time or at the instant they occur.
If the body undergoes a change in its mass distribution there will be an immediate change in its gravitational force without any lag.
Now, if we talk about special relativity, it would be absurd to say that an information can travel faster than light. The effect is in synchronization with the cause in one reference frame where the effect occurs after the cause for some observer in some other reference frame.
In order to observe Newton's law of gravity all the observer's in different reference frames must observe the same phenomena which could only be possible if time were absolute and in special relativity, time is not absolute.
Therefore, Newton's law of gravity was inconsistent with the Einstein's Special Relativity.
Answer:
1500 per second.
Explanation:
vibrations = 1.5 kilohertz
1.5×1000=1500
the answer is 1500 per second.
Answer:
<em>600N.</em>
Explanation:
From the question, we are to calculate the net force acting on the car.
According to Newton's second law of motion:
F = ma
m is the mass of the car
a is the acceleration = change in velocity/Time
a = v-u/t
F = m(v-u)/t
v is the final velocity = 30m/s
u is the initial velocity = 20m/s
t is the time = 5secs
m = 300kg
Get the net force:
Recall that: F = m(v-u)/t
F = 300(30-20)/5
F = 60(30-20)
F = 60(10)
<em>F = 600N</em>
<em>Hence the net force acting on the car is 600N.</em>
<em></em>
<em></em>
There are several information's of immense importance already given in the question. Based on the given information's the answer to the question can easily be determined.
Distance covered by the bicycle = 5000 meter
Time taken by the bicycle to reach the distance = 500 second.
Velocity of the bicycle = Distance / Time taken
= 5000/500 meter/second
= 50 meter/second
So the velocity of the bicycle is 50 meter per second. I hope the procedure is clear enough for you to understand. In future you can always use this procedure for solving similar problems.