“When we move down a group then there is increase in the size of elements because there occurs increase in atomic mass of the elements.
It means that there occurs increase in number of electrons due to which there will be increase in number of new shells. As a result, size of atom or element increases due to which there is increase in atomic radius of the element.
Therefore, we can conclude that increase in number of electrons makes the atomic radius change down a column of the periodic table.”
Answer:
40.88 kPa.
Explanation:
Given that,
Volume, V₁= 4.2 L
Pressure, P₁ = 110 kPa
We need to find the pressure of the gas when the volume is changed to 11.3L at constant temperature.
According to Boyle's law, at constant temperature, volume is inversely proportional to the pressure. Mathematically,

So, the new pressure is 40.88 kPa.
Answer:
Explanation:
Assume that you have mixed 135 mL of 0.0147 mol·L⁻¹ NiCl₂ with 190 mL of 0.250 mol·L⁻¹ NH₃.
1. Moles of Ni²⁺

2. Moles of NH₃

3. Initial concentrations after mixing
(a) Total volume
V = 135 mL + 190 mL = 325 mL
(b) [Ni²⁺]

(c) [NH₃]

3. Equilibrium concentration of Ni²⁺
The reaction will reach the same equilibrium whether it approaches from the right or left.
Assume the reaction goes to completion.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 6.106×10⁻³ 0.1462 0
C/mol·L⁻¹: -6.106×10⁻³ 0.1462-6×6.106×10⁻³ 0
E/mol·L⁻¹: 0 0.1095 6.106×10⁻³
Then we approach equilibrium from the right.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 0 0.1095 6.106×10⁻³
C/mol·L⁻¹: +x +6x -x
E/mol·L⁻¹: x 0.1095+6x 6.106×10⁻³-x
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D)
Kf is large, so x ≪ 6.106×10⁻³. Then
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}\\\\\dfrac{6.106 \times 10^{-3}}{x\times 0.1095^{6}} = 2.0 \times 10^{8}\\\\6.106 \times 10^{-3} = 2.0 \times 10^{8}\times 0.1095^{6}x= 345.1x\\x= \dfrac{6.106 \times 10^{-3}}{345.1} = 1.77 \times 10^{-5}\\\\\text{The concentration of Ni$^{2+}$ at equilibrium is $\large \boxed{\mathbf{1.77 \times 10^{-5}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7Bx%5Ctimes%200.1095%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C6.106%20%5Ctimes%2010%5E%7B-3%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5Ctimes%200.1095%5E%7B6%7Dx%3D%20345.1x%5C%5Cx%3D%20%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7B345.1%7D%20%3D%201.77%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Ni%24%5E%7B2%2B%7D%24%20at%20equilibrium%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.77%20%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)
Answer: they both have the same molecular formula but different structural formulae
Explanation:
hope this helps :)