A chemist is likely to:
<span>1. analyze the ingredients in ice cream
</span><span>2. determine how to separate gasoline from other substances in petroleum</span>
Answer:
KE = 1/2 * m * 
Explanation:
use the formula:
KE = 1/2 * m * 
KE = kinetic energy in joules (J)
m = mass in kg
v = velocity in m/s
To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

Here,
k = Coulomb's constant
= Charge at each object
r = Distance between them
As the distance is doubled so,





Therefore the factor is 1/4
The electrical force between these two charges remains the
same. In coulomb’s law, it states that the magnitude of two charges (product of
two charges) is inversely proportional to the square of the distance. Since both
the magnitude and the distance are halved, therefore, the change in both quantities
will have no effect in the value of electrical force.
Oxygen is diatomic, so its degree of freedom, (f1)= 5,
also its number of moles, n1= 1
Helium is monoatomic, so its degree of freedom (f2)= 3
and its number of moles given is, n2=2
Now using formula of effective degree of freedom of mixture, (f), we have:
f= (f1n1+f2n2)/(n1+n2)
= (5*1 + 3*2)/ (1+3)
=11/3
Also, from first law of thermodynamics;
U= n Cv. T = nRT(f2)
or, Cv = R. (f/2) (n & T cancel)
We know f=11/6,
substituting the value in above relation, we have:
Cv= R. 11/3*2
= R. 11/6
Also, Cp-Cv = R
or, Cp- R.(11/6)= R
or, Cp= R(11/6 )+1
= 17/6 R
Therefore, Cp/Cv = 17/11