The atomic mass is always equal to the sum of protons and neutrons in the nucleus. If you add the number of protons and neutrons (8 + 10) = 18 you will find that the atomic mass is 18.
The electric field at the surface of the cylinder is 51428V/m
Given data:
• The length of the charge is l= 7m.
• The charge is q = 2μC..
• The radius the cylinder is r = 10 cm
Since the filament length is so large as compared to the cylinder length that the infinite line of charge can be assumed.
The expression to calculate the electric field is given as,
E=2kλ/r
Here, λ is the linear charge density.
Substitute the values in the above equation,
E = (2×9×109N⋅m^2/C^2×2×10^−6C)/0.1m×7m
E = 51428N/C×(V/m)/(N/C)
=51428V/m
An electric charge is the property of matter where it has more or fewer electrons than protons in its atoms. Electrons carry a negative charge and protons carry a positive charge. Matter is positively charged if it contains more protons than electrons, and negatively charged if it contains more electrons than protons.
Learn more about charge here:
brainly.com/question/19886264
#SPJ4
The kinetic energy depends on several things like how cute I am
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>